User Tools

Site Tools


aufgaben:examples

Examples

Kommentar: nicht sichtbar » « nicht sichtbar!

$ a^2 + b^2 = c^2 $

\[ \oint_V f(s) \,ds \]

Sum $\displaystyle \sum_{n=1}^{\infty} 2^{-n} = 1$ inside text

Limit $\lim_{x\to\infty} f(x)$ inside text

Integral \(\int_{a}^{b} x^2 dx\) inside text.

The same integral on display: \[ \int_{a}^{b} x^2 \,dx \] and multiple integrals: \begin{gather*} \iint_V \mu(u,v) \,du\,dv \\ \iiint_V \mu(u,v,w) \,du\,dv\,dw \\ \iiiint_V \mu(t,u,v,w) \,dt\,du\,dv\,dw \\ \idotsint_V \mu(u_1,\dots,u_k) \,du_1 \dots du_k \\ \oint_V f(s) \,ds \end{gather*}

Sum \(\sum_{n=1}^{\infty} 2^{-n} = 1\) inside text.

The same sum on display: \[ \sum_{n=1}^{\infty} 2^{-n} = 1 \]

Product \(\prod_{i=a}^{b} f(i)\) inside text.

The same product on display: \[ \prod_{i=a}^{b} f(i) \]

Limit \(\lim_{x\to\infty} f(x)\) inside text.

The same limit on display: \[ \lim_{x\to\infty} f(x) \]

\begin{equation} Z=min E \int_{0}^{\infty} exp(-\rho t)\{ \alpha^2[r(t)-x(t)]^2+[\lambda ^ {-1}\frac{d{x(t)}}{d{t}}]^2 \} d{t} \end{equation}

Einstein field equation:

$ R_{\mu \nu} - {1 \over 2}R \, g_{\mu \nu} + \Lambda g_{\mu \nu}= {8 \pi G \over c^4} T_{\mu \nu} $

aufgaben/examples.txt · Last modified: 2022/09/13 21:04 by omdevelop